硬示例挖掘方法通常可以改善对象探测器的性能,这些探测器患有不平衡的训练集。在这项工作中,将两种现有的硬采矿方法(LRM和焦点损失,FL)改编成最先进的实时对象检测器Yolov5。广泛评估了提出的方法改善硬性示例性能的有效性。与使用原始损失函数相比,该方法将MAP提高3%,而在2021 Anti-UAV挑战数据集上单独使用硬挖掘方法(LRM或FL)相比,MAP和1-2%左右。
translated by 谷歌翻译
Objective: Despite numerous studies proposed for audio restoration in the literature, most of them focus on an isolated restoration problem such as denoising or dereverberation, ignoring other artifacts. Moreover, assuming a noisy or reverberant environment with limited number of fixed signal-to-distortion ratio (SDR) levels is a common practice. However, real-world audio is often corrupted by a blend of artifacts such as reverberation, sensor noise, and background audio mixture with varying types, severities, and duration. In this study, we propose a novel approach for blind restoration of real-world audio signals by Operational Generative Adversarial Networks (Op-GANs) with temporal and spectral objective metrics to enhance the quality of restored audio signal regardless of the type and severity of each artifact corrupting it. Methods: 1D Operational-GANs are used with generative neuron model optimized for blind restoration of any corrupted audio signal. Results: The proposed approach has been evaluated extensively over the benchmark TIMIT-RAR (speech) and GTZAN-RAR (non-speech) datasets corrupted with a random blend of artifacts each with a random severity to mimic real-world audio signals. Average SDR improvements of over 7.2 dB and 4.9 dB are achieved, respectively, which are substantial when compared with the baseline methods. Significance: This is a pioneer study in blind audio restoration with the unique capability of direct (time-domain) restoration of real-world audio whilst achieving an unprecedented level of performance for a wide SDR range and artifact types. Conclusion: 1D Op-GANs can achieve robust and computationally effective real-world audio restoration with significantly improved performance. The source codes and the generated real-world audio datasets are shared publicly with the research community in a dedicated GitHub repository1.
translated by 谷歌翻译
Continuous long-term monitoring of motor health is crucial for the early detection of abnormalities such as bearing faults (up to 51% of motor failures are attributed to bearing faults). Despite numerous methodologies proposed for bearing fault detection, most of them require normal (healthy) and abnormal (faulty) data for training. Even with the recent deep learning (DL) methodologies trained on the labeled data from the same machine, the classification accuracy significantly deteriorates when one or few conditions are altered. Furthermore, their performance suffers significantly or may entirely fail when they are tested on another machine with entirely different healthy and faulty signal patterns. To address this need, in this pilot study, we propose a zero-shot bearing fault detection method that can detect any fault on a new (target) machine regardless of the working conditions, sensor parameters, or fault characteristics. To accomplish this objective, a 1D Operational Generative Adversarial Network (Op-GAN) first characterizes the transition between normal and fault vibration signals of (a) source machine(s) under various conditions, sensor parameters, and fault types. Then for a target machine, the potential faulty signals can be generated, and over its actual healthy and synthesized faulty signals, a compact, and lightweight 1D Self-ONN fault detector can then be trained to detect the real faulty condition in real time whenever it occurs. To validate the proposed approach, a new benchmark dataset is created using two different motors working under different conditions and sensor locations. Experimental results demonstrate that this novel approach can accurately detect any bearing fault achieving an average recall rate of around 89% and 95% on two target machines regardless of its type, severity, and location.
translated by 谷歌翻译
我们提出了一种从一组输入输出对中学习的新算法。我们的算法专为输入变量和输出变量与输出变量之间的关系而呈现出跨预测器空间的异构行为的群体设计。该算法从生成子集开始,该子集集中在输入空间中的随机点。然后培训每个子集的本地预测器。然后,这些预测变量以一种新的方式组合以产生整体预测因子。由于其与堆叠回归的方法的相似,我们称之为“使用子集堆叠”或更少学习“。我们将测试性能与在多个数据集上的最先进的方法中进行比较。我们的比较表明,较少是一种竞争的监督学习方法。此外,我们观察到,在计算时间方面较少也有效,并且允许直接并行实现。
translated by 谷歌翻译